Abstract

Case Presentation

PET TAC and Resting state EEG-fMRI in Evaluation of the Ability to Understand and want in Patients Affected by Dementias with Neuro-psychiatric Disorders and other Mental Disorders

Mirko Avesani*, Graziella Beghini, Francesco Agnoliucilla Franchi, Camilla Vianello, Assunta Zamparelli, Cristiana Trevisan, Cinzia Scarpa, Nicola Siliprandi, Manuela Camiciaaura Adamiaura Rossiicia Mazzocchi, Maria Antonietta Conforto and L

Published: 11 January, 2024 | Volume 8 - Issue 1 | Pages: 001-009

Introduction: We strongly believe that rs-fMRI using independent component analysis (ICA) must be considered as a technique to be systematically used in the near future, as positron emission tomography (PET TC) is today. Unfortunately, this technique is not yet used in Italy because, despite the studies just summarized, it is considered “experimental” and not routine without reasonable justification!
Aim of the Study: We present two cases studied with these techniques, after the informed consent obtained by the patients
1) A young woman from Sicily, in whom an rs-fMRI revealed her severe personality disorder, was found capable of insight and strong-willed and was therefore found guilty by the criminal court of the murder of her young son, with a strange motive: rs-fMRI cannot be considered part of the assessment because it is so far considered experimental. PET-TAC was also classified as routine in Italy after a long legal discussion. We hope that all these studies, which are now summarized in this review, will be considered useful, at least in Europe, when a judge has to decide whether to sentence a person with psychological or psychiatric problems or to consider them as a person to be treated in a specific residential home (called REMS in Italy).
2) Another woman from Bergamo, after having killed a neighbor of hers, was, instead, considered not guilty because of her inability to want to kill him, and so admitted to a particular structure (REMS: residence to execution of security measures) to treat her problem, front temporal dementia, with a severe neuropsychiatric disorder (NPS), diagnosed after the crimen was fulfilled.
Conclusions: These two interesting cases demonstrate that in Italy nowadays, we do not have a homogeneous methodology to investigate the ability to understand and want, limiting the study only to personality tests. Here we describe new techniques that may help in this objective.

Read Full Article HTML DOI: 10.29328/journal.acr.1001086 Cite this Article Read Full Article PDF

Keywords:

PET TAC; EEG-fMRI; neuropsychiatric disorders; dementias; psychiatric ilnnesses

References

  1. Mohan A, Roberto AJ, Mohan A, Lorenzo A, Jones K, Carney MJ, Liogier-Weyback L, Hwang S, Lapidus KA. The Significance of the Default Mode Network (DMN) in Neurological and Neuropsychiatric Disorders: A Review. Yale J Biol Med. 2016 Mar 24;89(1):49-57. PMID: 27505016; PMCID: PMC4797836.
  2. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008 Mar;1124:1-38. doi: 10.1196/annals.1440.011. PMID: 18400922.
  3. Raichle ME. A default mode of brain function. Proc Natl Acad Sci USA. 2001; 98(2):676–682. doi: 10.1073/pnas.98.2.676.
  4. Raichle ME. The brain's default mode network. Annu Rev Neurosci. 2015 Jul 8;38:433-47. doi: 10.1146/annurev-neuro-071013-014030. Epub 2015 May 4. PMID: 25938726.
  5. Brown CA. Age and Alzheimer's pathology disrupt default mode network functioning via alterations in white matter microstructure but not hyperintensities. 2018; 104: 58–74. doi: 10.1016/j.cortex.2018.04.006.
  6. Whitfield-Gabrieli S, Ford JM. Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol. 2012;8:49-76. doi: 10.1146/annurev-clinpsy-032511-143049. Epub 2012 Jan 6. PMID: 22224834.
  7. Duncan J. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci. 2010; 14:172–179. doi: 10.1016/j.tics.2010.01.004.
  8. Fedorenko E, Behr MK, Kanwisher N. Functional specificity for high-level linguistic processing in the human brain. Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16428-33. doi: 10.1073/pnas.1112937108. Epub 2011 Sep 1. PMID: 21885736; PMCID: PMC3182706.
  9. Turnbull A, Wang HT, Schooler JW, Jefferies E, Margulies DS, Smallwood J. The ebb and flow of attention: Between-subject variation in intrinsic connectivity and cognition associated with the dynamics of ongoing experience. Neuroimage. 2019 Jan 15;185:286-299. doi: 10.1016/j.neuroimage.2018.09.069. Epub 2018 Sep 25. PMID: 30266263.
  10. Turnbull A. Left dorsolateral prefrontal cortex supports context-dependent prioritisation of off-task thought. Nat Commun. 2019; 10:3816. doi: 10.1038/s41467-019-11764-y.
  11. Erez Y. Discrimination of visual categories based on behavioral relevance in widespread regions of frontoparietal cortex. J Neurosci. 2015; 35:12383–12393. doi:10.1523/JNEUROSCI.1134-15.2015
  12. Cole MW, Ito T, Braver TS. The Behavioral Relevance of Task Information in Human Prefrontal Cortex. Cereb Cortex. 2016 Jun;26(6):2497-505. doi: 10.1093/cercor/bhv072. Epub 2015 Apr 13. PMID: 25870233; PMCID: PMC4869805.
  13. Bracci S, Daniels N, Op de Beeck H. Task Context Overrules Object- and Category-Related Representational Content in the Human Parietal Cortex. Cereb Cortex. 2017 Jan 1;27(1):310-321. doi: 10.1093/cercor/bhw419. PMID: 28108492; PMCID: PMC5939221.
  14. Qiao L. Dynamic trial-by-trial recoding of task-set representations in the frontoparietal cortex mediates behavioral flexibility. J Neurosci. 2017; 37:11037–11050. doi: 10.1523/JNEUROSCI.0935-17.2017
  15. Wang X, Gao Z, Smallwood J, Jefferies E. Both Default and Multiple-Demand Regions Represent Semantic Goal Information. J Neurosci. 2021 Apr 21;41(16):3679-3691. doi: 10.1523/JNEUROSCI.1782-20.2021. Epub 2021 Mar 4. PMID: 33664130; PMCID: PMC8055078.
  16. Smallwood J, Bernhardt BC, Leech R, Bzdok D, Jefferies E, Margulies DS. The default mode network in cognition: a topographical perspective. Nat Rev Neurosci. 2021 Aug;22(8):503-513. doi: 10.1038/s41583-021-00474-4. Epub 2021 Jul 5. PMID: 34226715.
  17. Spreng RN, Stevens WD, Chamberlain JP, Gilmore AW, Schacter DL. Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage. 2010 Oct 15;53(1):303-17. doi: 10.1016/j.neuroimage.2010.06.016. Epub 2010 Jun 18. PMID: 20600998; PMCID: PMC2914129.
  18. Spreng RN, Sepulcre J, Turner GR, Stevens WD, Schacter DL. Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J Cogn Neurosci. 2013 Jan;25(1):74-86. doi: 10.1162/jocn_a_00281. Epub 2012 Aug 20. PMID: 22905821; PMCID: PMC3816715.
  19. Dixon ML, De La Vega A, Mills C, Andrews-Hanna J, Spreng RN, Cole MW, Christoff K. Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1598-E1607. doi: 10.1073/pnas.1715766115. Epub 2018 Jan 30. Erratum in: Proc Natl Acad Sci U S A. 2018 Mar 12;: PMID: 29382744; PMCID: PMC5816169.
  20. Simony E, Honey CJ, Chen J, Lositsky O, Yeshurun Y, Wiesel A, Hasson U. Dynamic reconfiguration of the default mode network during narrative comprehension. Nat Commun. 2016 Jul 18;7:12141. doi: 10.1038/ncomms12141. PMID: 27424918; PMCID: PMC4960303.
  21. Lanzoni L, Ravasio D, Thompson H, Vatansever D, Margulies D, Smallwood J, Jefferies E. The role of default mode network in semantic cue integration. Neuroimage. 2020 Oct 1;219:117019. doi: 10.1016/j.neuroimage.2020.117019. Epub 2020 Jun 6. PMID: 32522664; PMCID: PMC7443705.
  22. Sestieri C, Corbetta M, Romani GL, Shulman GL. Episodic memory retrieval, parietal cortex, and the default mode network: functional and topographic analyses. J Neurosci. 2011 Mar 23;31(12):4407-20. doi: 10.1523/JNEUROSCI.3335-10.2011. PMID: 21430142; PMCID: PMC3098040.
  23. Binder JR. The neurobiology of semantic memory. Trends Cogn Sci. 2011; 15:527–536. doi: 10.1016/j.tics.2011.10.001
  24. Wirth M. Semantic memory involvement in the default mode network: a functional neuroimaging study using independent component analysis. Neuroimage. 2011; 54:3057–3066. doi: 10.1016/j.neuroimage.2010.10.039.
  25. Krieger-Redwood K, Jefferies E, Karapanagiotidis T, Seymour R, Nunes A, Ang JWA, Majernikova V, Mollo G, Smallwood J. Down but not out in posterior cingulate cortex: Deactivation yet functional coupling with prefrontal cortex during demanding semantic cognition. Neuroimage. 2016 Nov 1;141:366-377. doi: 10.1016/j.neuroimage.2016.07.060. Epub 2016 Jul 30. PMID: 27485753; PMCID: PMC5035136.
  26. Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Rao SM, Cox RW. Conceptual processing during the conscious resting state. A functional MRI study. J Cogn Neurosci. 1999 Jan;11(1):80-95. doi: 10.1162/089892999563265. PMID: 9950716.
  27. Binder JR, Desai RH, Graves WW, Conant LL. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex. 2009 Dec;19(12):2767-96. doi: 10.1093/cercor/bhp055. Epub 2009 Mar 27. PMID: 19329570; PMCID: PMC2774390.
  28. Humphreys GF, Hoffman P, Visser M, Binney RJ, Lambon Ralph MA. Establishing task- and modality-dependent dissociations between the semantic and default mode networks. Proc Natl Acad Sci U S A. 2015 Jun 23;112(25):7857-62. doi: 10.1073/pnas.1422760112. Epub 2015 Jun 8. PMID: 26056304; PMCID: PMC4485123.
  29. Binder JR, Westbury CF, McKiernan KA, Possing ET, Medler DA. Distinct brain systems for processing concrete and abstract concepts. J Cogn Neurosci. 2005 Jun;17(6):905-17. doi: 10.1162/0898929054021102. PMID: 16021798.
  30. Seghier ML, Fagan E, Price CJ. Functional subdivisions in the left angular gyrus where the semantic system meets and diverges from the default network. J Neurosci. 2010 Dec 15;30(50):16809-17. doi: 10.1523/JNEUROSCI.3377-10.2010. PMID: 21159952; PMCID: PMC3105816.
  31. Murphy C. Distant from input: evidence of regions within the default mode network supporting perceptually-decoupled and conceptually-guided cognition. Neuroimage. 2018; 171:393–401. doi: 10.1016/j.neuroimage.2018.01.017.
  32. Murphy C. Fractionating the anterior temporal lobe: MVPA reveals differential responses to input and conceptual modality. Neuroimage. 2017. doi: 10.1016/j.neuroimage.2016.11.067.
  33. Wang X, Margulies DS, Smallwood J, Jefferies E. A gradient from long-term memory to novel cognition: Transitions through default mode and executive cortex. Neuroimage. 2020 Oct 15;220:117074. doi: 10.1016/j.neuroimage.2020.117074. Epub 2020 Jun 20. PMID: 32574804; PMCID: PMC7573535.
  34. Esposito F, Aragri A, Pesaresi I, Cirillo S, Tedeschi G, Marciano E, Goebel R, Di Salle F. Independent component model of the default-mode brain function: combining individual-level and population-level analyses in resting-state fMRI. Magn Reson Imaging. 2008 Sep;26(7):905-13. doi: 10.1016/j.mri.2008.01.045. Epub 2008 May 16. PMID: 18486388.
  35. Quattrini G, Pini L, Pievani M, Magni LR, Lanfredi M, Ferrari C, Boccardi M, Bignotti S, Magnaldi S, Cobelli M, Rillosi L, Beneduce R, Rossi G, Frisoni GB, Rossi R. Abnormalities in functional connectivity in borderline personality disorder: Correlations with metacognition and emotion dysregulation. Psychiatry Res Neuroimaging. 2019 Jan 30;283:118-124. doi: 10.1016/j.pscychresns.2018.12.010. Epub 2018 Dec 20. PMID: 30591402.
  36. Xu T, Cullen KR, Mueller B, Schreiner MW, Lim KO, Schulz SC, Parhi KK. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI. Neuroimage Clin. 2016 Feb 18;11:302-315. doi: 10.1016/j.nicl.2016.02.006. PMID: 26977400; PMCID: PMC4782004.
  37. Yang H, Chen X, Chen ZB, Li L, Li XY, Castellanos FX, Bai TJ, Bo QJ, Cao J, Chang ZK, Chen GM, Chen NX, Chen W, Cheng C, Cheng YQ, Cui XL, Duan J, Fang Y, Gong QY, Guo WB, Hou ZH, Hu L, Kuang L, Li F, et al. Disrupted intrinsic functional brain topology in patients with major depressive disorder. Mol Psychiatry. 2021 Dec;26(12):7363-7371. doi: 10.1038/s41380-021-01247-2. Epub 2021 Aug 12. PMID: 34385597; PMCID: PMC8873016.

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Figure 1

Figure 4

Figure 1

Figure 5

Similar Articles

  • PET TAC and Resting state EEG-fMRI in Evaluation of the Ability to Understand and want in Patients Affected by Dementias with Neuro-psychiatric Disorders and other Mental Disorders
    Mirko Avesani*, Graziella Beghini, Francesco Agnoliucilla Franchi, Camilla Vianello, Assunta Zamparelli, Cristiana Trevisan, Cinzia Scarpa, Nicola Siliprandi, Manuela Camiciaaura Adamiaura Rossiicia Mazzocchi, Maria Antonietta Conforto and L Mirko Avesani*, Graziella Beghini, Francesco Agnoli, Lucilla Franchi, Camilla Vianello, Assunta Zamparelli, Cristiana Trevisan, Cinzia Scarpa, Nicola Siliprandi, Manuela Camicia, Laura Adami, Laura Rossi, Licia Mazzocchi, Maria Antonietta Conforto, L. PET TAC and Resting state EEG-fMRI in Evaluation of the Ability to Understand and want in Patients Affected by Dementias with Neuro-psychiatric Disorders and other Mental Disorders. . 2024 doi: 10.29328/journal.acr.1001086; 8: 001-009

Recently Viewed

Read More

Most Viewed

Read More

Help ?