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Abstract

Background: Microorganisms belonging to Streptomyces sp. are Gram-positive bacteria known for 
their unsurpassed capacity for the production of secondary metabolites with diverse biological activities. 
The aim of this study was to evaluate the antimicrobial and antioxidant properties of ethyl acetate 
Streptomyces sp. PERM2 extract, its potential modes of action and bioactive secondary metabolites.

Results: The ethyl acetate PERM2 extract showed antimicrobial activity more pronounced on both 
Gram-positive and Gram-negative bacteria and fungi with a Minimum Inhibitory Concentration value (MIC) 
of 0.5 mg/mL and Minimum Bactericidal Concentration (MBC) of 2 - 4 mg/mL against bacterial pathogens. 
MIC value against pathogenic fungi was 2 mg/mL and Minimum Fungicidal Concentration (MFC) of 0.01 - 
0.05 mg/mL against pathogenic fungi. PERM2 crude extract showed the ability to inhibit bacteria cell wall 
synthesis at 0.5 and 1 MIC. The extract was found to possess dose-dependent 2,2-Diphenyl-picrylhadrazyl 
(DPPH) free radical scavenging and Ferric reducing activity. The gas chromatography-mass spectrometry 
(GC-MS) analysis revealed the presence of three major compounds identiϐied as 9,12-octadecadienoic acid 
(Z, Z) (29.75%), tridecyl triϐluoroacetate (24.82%) and 1-(+)-ascorbic acid 2, 6-dihexadecanoate (22.34%). 
The liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed the presence of 
22 non-volatile metabolites in PERM2 extract and only the compound 3, 30-O-dimethylellagic acid was 
identiϐied. 

Conclusion: The results of this study indicate that ethyl acetate Streptomyces sp. PERM2 extract 
possesses antibacterial, antifungal, and antioxidant activities; inhibits bacteria cell wall and protein 
synthesis; and contains signiϐicant bioactive secondary metabolites which could be used as an alternative 
to multi-resistance antibiotics.

Introduction
Microbial natural products are a source of several important 

drugs of high therapeutic value. The majority of commercially 
available pharmaceutical products are secondary metabolites 
or their derivatives produced by bacteria, fungi, and 
actinobacteria [1]. Microbial secondary metabolites are one 

of the immense reservoirs of natural chemical diversity with 
potent biological activity [2]. Among all living organisms, 
the actinobacteria phylum currently represents the most 
prospective group of microorganisms for the discovery of 
bioactive compounds such as antimicrobials, antitumor 
agents, antiparasitics, anticancer agents, enzymes, and some 
other endogenous metabolites with free radicals scavenging 
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activities properties [3-5]. Out of 22,500 biologically active 
compounds that have been extracted from microbes, 45% are 
from actinobacteria, 38% are from fungi and 17% are from 
unicellular bacteria [6].

Actinobacteria are a diverse group of Gram-positive 
bacteria and ϐilamentous bacteria that have high Guanine-
Cytosine (GC) content ranging from 50 to 70 mol% [7]. They 
are characterized by complex morphological differentiation 
and are considered as an intermediate group of bacteria and 
fungi [8]. Their presence in various ecological habitats has 
enabled researchers to exploit their tremendous potential as 
the richest source of pharmaceutical and biologically active 
products [9]. Therefore, actinobacteria are considered the 
most economical and biotechnological important prokaryotes 
which produce several secondary metabolites with signiϐicant 
biological activities. Out of these actinobacteria, Streptomyces 
is an important industrial group of organisms that is widely 
explored for a wide range of biologically active compounds 
[10]. Nearly 75% of all the known industrial antibiotics [11] 
and numerous economically important compounds [12] were 
obtained from streptomyces. 

Secondary metabolites are organic compounds that have 
no direct role in the vegetative growth and development of 
the organism. Microbial secondary metabolites are organic 
compounds that have the potential for the discovery 
of new drugs to ϐight against antibiotic resistance [13]. 
Among the microorganisms, the phylum Actinobacteria 
(order- Actinomycetales), represents a notable source for 
the production of new bioactive secondary metabolites 
including antibiotics [14,15]. The phylum alone accounts for 
the production of approximately 75% of the total bioactive 
compounds including antibiotics with more than 70% 
produced by members of the genus Streptomyces [10,16]. 
Genus Streptomyces is the most dominant and proliϐic 
source of bioactive metabolites with a variety of biological 
activities including antimicrobial, anti-cancer agents, and 
other pharmaceutically useful compounds [17-19]. Of 10,000 
known compounds, the genus Streptomyces alone accounts for 
nearly 7500 compounds, while the rare actinobacterial genera 
including Nocardia, Micromonospora, Streptosporangium, 
Actinomadura, Saccharopolyspora, and Actinoplanes represent 
2500 compounds [17]. Streptomyces spp. is widely distributed 
in various habitats like soils, marine environments, fresh 
waters, and rhizosphere [20-23]. 

Bio-prospecting studies on actinobacteria are mostly 
conϐined to soils, marine environments, freshwater, and 
rhizosphere and with less interest given to plant tissues. 
However, there are few reports about the presence of 
actinobacteria in plant tissues (as endophytes) [3]. Moreover, 
the possibility of ϐinding a novel bioactive molecule from 
the soil, rhizosphere, and marine environments habitats has 
diminished over the years. Plant tissues are underexploited 
sources for the discovery of novel metabolites. With the 

increase in resistance among pathogens and the unavailability 
of novel metabolites from the rhizosphere and soil habitats, 
endophytic-derived drugs could be of great importance. Our 
previous studies showed that, the potential Streptomyces 
sp. PERM2 has been isolated from cocoyam roots from 
the Kumba locality around Mount Cameroon [24]. Mount 
Cameroon’s locality has been found unexplored region for 
actinobacterial research. The present study is intended to 
investigate the antimicrobial and antioxidant activities of 
the ethyl acetate crude extract of Streptomyces sp. PERM2; to 
determine its modes of action and characterize its bioactive 
secondary metabolites production for further use as potential 
therapeutic agents.

Materials and methods
Streptomycete strain

Streptomyces sp. PERM2 (KY400013) used in this study 
was isolated from cocoyam root from Kumba locality around 
Mount Cameroon and characterized in our previous study 
[24]. Pure cultures were kept in 20% glycerol at -80 oC storage.

Microbial organisms

The following Gram-positive and Gram-negative bacteria 
and some fungi were used for the experiment. Gram-positive: 
Streptococcus pneumoniae (ATCC 6465), Haemophilus 
in luenza (ATCC 49247), Staphylococcus aureus (ATCC 
43300) and Bacillus cereus. Gram-negative: Salmonella typhi, 
Escherichia coli (ATCC 25922), Pseudomonas aeruginosa, 
Salmonella enteritidis. Fungi: Pythium myriotylum, Fusarium 
solani and Phytophthora megakarya. The reference bacterial 
cultures and fungal pathogens strains were obtained from 
the Laboratory of Clinical Microbiology of the University 
of Yaoundé I and the Laboratory of Phytoprotection and 
Valorization of Genetic Resources of the Biotechnology Center 
of the University of Yaoundé I respectively. Bacterial inocula 
were prepared by growing cells in Mueller Hinton broth 
(MHB) for 24 h at 37 °C. The ϐilamentous fungi were grown on 
Potato Dextrose Agar (PDA) slants at 28 °C for 14 days and the 
spores were collected using sterile double distilled water and 
homogenized. These microorganisms were maintained on an 
agar slant in a refrigerator at 4 °C.

Antimicrobial activity of Streptomyces sp. PERM2

The antibacterial activity of Streptomyces sp. PERM2 was 
performed by using the disc diffusion method [25]. The 24 
hours on Mueller-Hinton Agar (MHA) of test bacteria were 
inoculated into tubes containing 5 mL of sterile distilled 
water and the concentration was calibrated at 1.0 × 105 CFU/
mL using Mac Farland cell [26]. Using sterile swabs, 100 μL 
of calibrated broth cultures of test bacteria were swabbed on 
sterile Mueller Hinton agar plates followed by deposition of 
the 6 mm bacterial plug of 14 days old grown on yeast malt 
extract agar. The plates were incubated at 4 °C for 4 hours, 
then at 37 °C for 24 hours. The zone of inhibition formed was 
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measured using a ruler. The experiment was carried out in 
triplicate and the average value was recorded.

The antifungal activity of Streptomyces sp. PERM2 
was performed by using dual culture in vitro assay [27]. 
Streptomyces sp. PERM2 was transferred to the center of 
the Petri dishes with PDA, with a ϐlamed inoculating loop, 
forming a straight line across the plate, and was incubated 
at room temperature (28 ± 2 ºC), for ϐive days. After this 
incubation period, two discs (6 mm in diameter) of the 8-day-
old fungus culture were transferred to both halves of the 
plate, at a distance of 1.5 cm from the line of growth of the 
actinomycete colonies. The fungi were grown as described 
above. The control treatments consisted of Petri plates with 
PDA, without the actinomycete cultures, but with the fungus 
discs transferred to the plates at the same distance as de ones 
for the other treatments. The assay was incubated at room 
temperature, and the mycelium growth was daily measured 
with a ruler, for a period of ϐive days (period in which the 
fungal cultures from the control treatment reached the plate 
margins). The percentage inhibition was calculated as follows:

C T
I 100

C


 

Where: 

I: Inhibition percentage (%).

C: Distance done by fungal in Petri plates with PDA, without 
the actinomycete cultures (mm).

T: Distance done by fungal in Petri plates with PDA, with 
the actinomycetes cultures (mm).

Preparation of the crude extract

In this study, solid-state fermentation was adopted for 
the production of the crude extract [28]. For the preparation 
of inoculum, the streptomycete strain PERM2 was streaked 
on the yeast extract malt extract agar (ISP2 medium) plates 
and incubated at 28 °C for 7 days. The spores were scrapped 
from the plate and inoculated into 25 mL of yeast extract 
malt extract broth (ISP2) medium and incubated in a rotary 
shaker for 48 h with 150 rpm at 28 °C. After incubation, the 
inoculum was prepared by transferring the 2-day cultures in 
250 mL of ISP2 broth contained in a 1,000 mL conical ϐlask 
and incubated at 28 °C for 7 days. About 50 g of wheat bran 
was added into a 1,000 mL conical ϐlask with 50 mL of distilled 
water and sterilized. Then 10% of inoculum was added into 
a conical ϐlask containing sterile wheat bran. The ϐlasks 
were incubated at 28 ± 2 °C for 30 days. After incubation, 
the fermented biomass of the PERM2 strain was mixed with 
ethyl acetate and macerated (3 × 24 h). The crude extract 
was collected and concentrated by evaporation. The quantity 
of crude extract was measured by adding the crude into the 
dried 100 mL preweighed beaker. After evaporation of the 
solvent, the weight of the crude extract was measured and 
stored in sterile vials.

Antibacterial activity of ethyl acetate extract of 
Streptomyces sp. PERM2 

The efϐicacy of ethyl acetate crude extract of PERM2 
to inhibit bacteria was tested against four Gram-positive 
including Streptococcus pneumoniae (ATCC 6465), 
Haemophilus in luenza (ATCC 49247), Staphylococcus aureus 
(ATCC 43300) and Bacillus cereus and four Gram-negative: 
Salmonella typhi, Escherichia coli (ATCC 25922), Pseudomonas 
aeruginosa, Salmonella enteritidis by discs diffusion assay [29]. 
The 24 hours on Mueller-Hinton Agar (MHA) of test bacteria 
were inoculated into tubes containing sterile distilled water. 
Using sterile swabs, 100 μL of broth cultures of test bacteria 
calibrated at 1.0 105 CFU/mL using Mac Farland cell [26], 
were swabbed on sterile Mueller Hinton agar plates followed 
by depositing the sterile discs (6 mm) impregnated with 30 μL 
of ethyl acetate extract (20 mg/mL of 10% DMSO (Dimethyl 
sulphoxide). Antibiotics (Streptomycin, 1 mg/mL) along with 
bacteria cultures were used as a positive control, and DMSO 
(10%) containing bacterial cultures was used as the negative 
control. The plates were incubated at 37 °C for 24 hours. The 
zone of inhibition formed was measured using a ruler. The 
experiment was carried out in triplicate and the average value 
was recorded.

Antifungal activity of ethyl acetate extract of 
Streptomyces sp. PERM2 

The antifungal activity of crude extract was determined 
using the agar well diffusion method [30]. Antifungal bioassay 
was done on a 9 cm Petri plate with 20 mL of PDA. A 6 mm 
fungal plug was cut from the leading edges of a seven-day-old 
pure culture of P. myriotylum, F. solani, P. megakarya, and was 
put in the center of the plate. A 6 mm diameter well was made 
at 1.5 cm from the fungal plug and another well at the opposite 
side, followed by pipetting 30 μL aliquot of each crude extract 
(20 mg/mL) into the two wells on each plate. Control plates 
contained wells of DMSO 10% and nystatin (2 mg/mL). Radial 
growth was recorded after incubation for 10 days. The radial 
growth of the fungal colony was recorded with a meter ruler 
along two diagonal lines drawn on the reverse side of each 
plate. The experiment was carried out in triplicate and the 
average value was recorded. The Percent Inhibition of Radial 
Growth (PIRG) of each treatment compared to control was 
computed utilizing the formula below: 

Radial growth of control Radial growth of treatment
PIRG (%)

Radial growth of control




Minimum Inhibitory Concentration (MIC) of ethyl 
acetate extract of Streptomyces sp. PERM2

The MIC of the extract was determined by NCCLS microbroth 
dilution methods [31]. Bacterial and fungal pathogens were 
grown in sterile broth and 10 μL of log phase culture was 
added into 96 well micro titre plates. The crude extract was 
dissolved in 10% DMSO and diluted in different concentrations 
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(16,000, 8,000, 4,000, 2,000, 1,000, 500, 250, 125, 62.5, 31.25, 
15.62.and 7.81 μg/mL). Then, 10 μL of the bacterial and 
fungal suspension (1.0 × 105 cells/mL) was inoculated into 
each well of a 96-well microplate, each containing a different 
concentration of the test agents. Diluted extracts and sterile 
broth were added into pre-coated microbial cultures, making 
up a total volume of 200 μL. Streptomycin (200 μg/mL) and 
nystatin (400 μg/mL) were used as the positive control for 
bacteria and fungi respectively, and culture medium (200 μL) 
was used as the negative control. The plates were sealed and 
incubated at 37 °C during 24h for bacteria and at 30 °C during 
48 h for fungi. After incubation, MIC of extracts was revealed 
with 10 μL of iodonitrotetrazolium (2 mg/mL) by adding in 
each well and incubated for 30 minutes at room temperature. 
The wells where there was no coloration are considered 
as concentrations that possess inhibitory activity against 
pathogens and wells containing the smallest concentration 
uncolored were considered as the MIC. 

Minimum Bactericidal Concentration (MBC) of ethyl 
acetate extract of Streptomyces sp. PERM2 

The MBC values of extract were determined by inoculating 
into Yeast Malt Extract Agar (YMEA) plates, 10 mL of medium 
from each of the wells from the MIC test which showed no 
turbidity. The plates were incubated at 37 °C for 24 h. Minimum 
bactericidal concentration (MBC) was deϐined as the lowest 
concentration of the test agent at which no microbial growth 
was observed on the plates [31].

Antioxidant assays of ethyl acetate extract of 
Streptomyces sp. PERM2

DPPH free radical scavenging activity: The 2,2-Diphenyl-
1-picrylhydrazyl free radical scavenging activity of the crude 
ethyl acetate extract of PERM2 strain was measured according 
to the procedure described by [32]. Brieϐly, 500 μL of DPPH 
solution (0.0016% in methanol) was mixed with 500 μL of 
different concentrations (200, 400, 800, and 1,600 μg/mL) of 
ethyl acetate extract and reference standard (ascorbic acid) 
in separate tubes. The tubes were incubated in the dark at 
room temperature for 20 minutes and the optical density was 
measured at 515 nm using a UV-visible spectrophotometer 
(SHIMADZU, Japan). The absorbance of the DPPH control 
(without extract/standard) was noted. The scavenging 
activity was calculated using the formula: 

Scavenging activity (%) = [(A – B) / A] x 100

Where A is the absorbance of DPPH control and B is the 
absorbance of DPPH in the presence of extract/standard.

Ferric reducing activity

The reducing potential of the ethyl acetate extract was 
determined by a Ferric reducing assay [33]. In this assay, 
0.2 ml of different concentrations (100, 200, 400, 600, 800, 
and 1,000 μg/mL) of ethyl acetate extract of PERM2 and 

ascorbic acid (reference standard) in 1 mL of methanol were 
mixed separately with 0.5 mL of phosphate buffer (200 mM, 
pH 6.6) and 0.5 mL of 1% potassium ferricyanide. The tubes 
were incubated at 50oC for 20 minutes in a water bath, cooled 
rapidly, and mixed with 0.5 mL of 10% trichloroacetic acid 
and 0.05 mL of 0.1% ferric chloride. After 10 minutes in the 
dark, the amount of iron (II)-ferricyanide complex formed 
was determined by measuring the formation of Perl’s Prussian 
blue at 700 nm. An increase in absorbance on an increase in 
concentration indicates increased reducing power.

Metal chelating activity (%) = [(A – B) / A] x 100

Where A is the absorbance of the control and B is the 
absorbance of the sample. EDTA was used as a positive control.

Determination of modes of action of ethyl acetate 
extract of Streptomyces sp. PERM2 

Effect of ethyl acetate extract of Streptomyces sp. PERM2 
on inhibition of bacteria cell wall synthesis: The modiϐied 
protocol of [34] was used to conduct this experiment. For this 
purpose, a standardized bacterial suspension (E. coli) at the 0.5 
McFarland scale in 0.9% NaCl was prepared. A volume of 100 μL 
of extract was introduced into different tubes containing this 
suspension in order to have concentrations of the suspension 
equivalent to the minimum inhibitory concentration (1 MIC) 
and half minimum inhibitory concentration (½ MIC) in the 
medium. The suspensions obtained were incubated at 37 °C 
while stirring. At times 0 h, 2 h, 4 h, and 6 h, the absorbance 
was measured at 620 nm. The absorbance at zero hours (0 h) 
was used to evaluate the relative absorbance (Ar) at different 
times in order to draw the Ar = f (t) curve.

Effect of ethyl acetate extract of Streptomyces sp. PERM2 
on inhibition of bacteria protein synthesis: In ϐive tubes 
each containing 9 mL of suspension Mueller Hinton, 0.5 mL 
of bacterial suspension (E. coli) (standardized to McFarland’s 
0.5 scale) was added to each tube. The extract was then added 
to each preceding mixture to give the concentrations: 1 MIC 
and ½ MIC. The control tube was treated under the same 
conditions and received 0.5 mL of PDB instead of the extract. 
The tubes were incubated at 37 °C with a rotation of 80 rpm. 
After 24 hours of incubation, centrifugation at 13,000 rpm for 
2 minutes was used to recover the bacterial cells, which were 
weighed and mixed with the lysis buffer at a rate of 40 mg 
of bacteria per 500 mL of buffer. After 1 hour of incubation, 
centrifugation at 13,000 rpm for 3 minutes allowed the 
recovery of the supernatant containing the proteins, which 
were then assayed by the Bradford reagent (Sigma-Aldrich) 
using the microplate reader (FLUOstar Omega Microplate 
Reader). The lysis buffer constituted the blank [35].

Effect of ethyl acetate extract of Streptomyces sp. 
PERM2 on the inhibition of ATPase /H+ proton pumps: 
The evaluation of the inhibitory effect of the crude extract on 
proton pumps was carried out by controlling the pH of the 
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spore suspension medium according to the protocol described 
by [36]. Inhibition of the acidiϐication of the medium in the 
presence of the extracts was attributed to an inhibitory effect 
of the functioning of the H+ ATPase pumps by the extracts. 4 mL 
for the bacterial (E. coli) suspension was prepared and 0.5 mL 
of each extract was added to obtain suspension concentrations 
equal to ½ MIC and 1 MIC. After 10 min of pre-incubation at 
37 °C, acidiϐication of the medium was initiated by adding 
0.5 mL of 20% glucose solution whose rapid catabolism will 
be accompanied by the release of protons into the medium. 
Thereafter, the pH of the medium was measured every 15 
min for 1h30 min. For the negative control, the extract was 
replaced by water; the pH values noted made it possible to 
draw the curve of pH variation as a function of time.

Gas chromatography-mass spectrometry (GC-MS) 

The analysis of the volatile constituents in the extract was 
determined by GC-MS technique. In brief,

PERM2 crude extract was subjected to a Shimadzu GC-17A 
attached to a Shimadzu GC-MS-QP5050A system. The column 
used was a Phenomenex Zebron ZBFFAP ultra-low-bleed 
Bonded Polyethylene Glycol fused capillary column of 30 mL 
× 0.25 mm I.D × 0.25 μm ϐilm thickness. Split ratio 20 injection 
was performed. Helium was the transporter carrier gas with 
a stream ϐlow rate of 0.7 mL/ min. The column temperature 
was kept at 70 °C for 3 min, then modiϐied at 10 °C/min to 90 
°C via programming and ϐinally modiϐied at 5 °C/min to 230 
°C. The inlet and detector temperatures were 230 °C and 250 
°C, respectively, while the dissolvable deferral (solvent delay) 
was 5.75 min [30].

Liquid chromatography-mass spectrometry (LC-MS/MS) 

The analysis of the non-volatile constituents in the 
extract was determined by LC-MS/MS technique. An AB 
Sciex 5500QTrap (Linear Quadrupole Hybrid Ion Trap Mass 
Spectrometer, AB Sciex, Toronto, Canada) mass spectrometer 
operating in Electrospray Ionization (ESI) negative mode and 
hyphenated with an Agilent 1290 ultra-high performance 
liquid chromatography system was used. The high-purity 
nitrogen gas for the mass spectrometer was set at 40 psi for 
source gas, 40 psi for the heating gas, and HIGH for collision 
gas with a source temperature of 500 °C. The setting for 
electrospray ionization voltage was set to 4500 kV. The 
collision energy to attain fragmentation was set at 35 eV with 
a spread of ±15 eV. The mass range for MS/MS scan was set 
from 50 - 1000 m/z while the mass range for full scan was set 
from 100 - 1000 m/z while scan speed was set at 1000 m/z 
per second. A Phenomenex Synergi Fusion RP (100 mm × 2.1 
mm i.d., 3 um particle size, Phenomenex, CA, USA) was used to 
obtain separation. The mobile phase was made up of aqueous 
ammonium formate (5 mmol/l) with 0.1% formic acid (solvent 
A) and acetonitrile with ammonium formate (5 mmol/l) with 
0.1% formic acid (solvent B). The compounds were separated 
with the following linear-programmed solvent gradient: 0 min 

(10% B), 10 min (95% B), 2 min (95% B) then equilibrating 
back to 10% B for 3 min. The ϐlow rate for the column was set 
at 0.25 mL/min while the column temperature was set at 40 °C
and the injection volume at 10 μL [30].

Statistical analysis

All experiments were conducted in triplicate and the 
readings were taken as the mean ± the standard deviation 
of the mean of three replicates, which were calculated 
using Microsoft Excel XP 2013. Data were analysed using 
GraphPad Prism software version 8.0.1. One-way analysis of 
variance (ANOVA) followed by Tukey’s test was performed 
to determine differences between the biological activities 
of the ethyl acetate PERM2 crude extract. Differences were 
considered significant at a probability level of 5% (p < 0.05).

Results
Antimicrobial activity of Streptomyces sp. PERM2

Based on antimicrobial activity using the disc diffusion 
method, Streptomyces sp. PERM2 showed potent activity (> 
10 mm diameter inhibition zones) against the growth of ϐive 
pathogenic bacteria (H. in luenza (ATCC 49247), E. coli (ATCC 
25922), S. enteritidis, S. aureus, and B. cereus). The minimum 
inhibition diameter was obtained against S. pneumonia 
(10.00 ± 0.5 mm). Streptomyces sp. PERM2 showed stronger 
antagonistic activity against all the pathogenic fungi (Table 1).

Antimicrobial assays of ethyl acetate extract of 
Streptomyces sp. PERM2 

Antibacterial and antifungal activities: Antagonistic 
characteristics of the ethyl acetate crude extract of Streptomyces 
sp. PERM2 showed potent antagonistic activity against 
bacterial and fungal pathogens (Table 2). Of eight bacterial 
pathogens, the highest inhibition activity was manifested 
against P. aeruginosa (26.00 ± 0.3 mm). Susceptibility of 
H. in luenza (14.00 ± 0.3 mm), S. aureus (16.00 ± 0.5 mm), 
B. cereus (17.00 ± 0.4 mm), S. typhi (16.65 ± 0.5 mm), E. coli 
(15.66 ± 0.5 mm) and S. enteritidis (14.00 ± 0.4 mm) to PERM2 

Table 1: Antimicrobial activity of Streptomyces sp. PERM2.

Test microorganisms
Zone of inhibition diameter (mm)

Bacteria 

Streptococcus pneumoniae (ATCC 6465) 10.00 ± 0.5d

Haemophilus in luenza (ATCC 49247) 26.70 ± 0.6a 

Staphylococcus aureus (ATCC 43300) 20.66 ± 0.4b

Bacilus cereus 20.33 ± 0.4b

Salmonella typhi 17.00 ± 0.5c

Escherichia coli (ATCC 25922) 26.60 ± 0.9a

Pseudomonas aeruginosa 12.00 ± 0.3d

Salmonella enteritidis 21.60 ± 0.8b

Fungi Inhibition percentage (%)

Pythium myriotylum 100a

 Fusarium solani 95.85a

Phytophthora megakarya. 100a

ATCC: American Type Culture Selection.
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crude extract was noticeable. Streptococcus pneumonia was 
less susceptible to PERM2 crude extract (11.00 ± 0.4 mm). 
However, the inhibitory effect of the extract was lesser than 
that of standard antibiotics. DMSO (10%) did not show any 
inhibition of bacteria. Among fungal pathogens, a reduction in 
mycelial growth was signiϐicantly observed against F. solani 
(36.11%) (Table 2).

Minimum inhibitory concentration (MIC), minimum 
bactericidal concentration (MBC) and minimum 
fungicidal concentration (MFC)

Based on the 96-well microliter assay, the MIC values of 
the ethyl acetate crude extract of Streptomyces sp. PERM2 is 
shown in Table 3. The MIC value of the crude extract of PERM2 
was determined as 0.5 mg/mL against H. in luenza; 1 mg/mL 
against B. cereus, P. aeruginosa, and S. enteritidi; 2 mg/mL 
against S. aureus, S. thyphi, and E. coli. The lowest MIC was 
observed against H. in luenza at 0.5 mg/mL. MIC against fungal 
pathogens was determined as 2 mg/mL against P. myriotylum 
and 4 mg/mL against F. solani and P. megakarya (Table 3). 
The MBC value of the crude extract of PERM2 was 2 mg/mL 
against 6 pathogenic bacteria (P. pneumoniae, H. in luenza, B. 
cereus, S. thyphi, E. coli, and S. aeruginosa) while the MFC value 
was 0.01 mg/mL against F. solani and 0.05 mg/mL against P. 
myriotylum and P. megakarya (Table 3).

Modes of action and resistance of ethyl acetate extract 
of Streptomyces sp. PERM2

Inhibition of bacteria cell wall synthesis: The 0.5 MIC 
and 1 MIC destroyed bacterial cell walls or inhibited cell wall 
bacteria of the crude extract of Streptomyces sp. PERM2 with 
compared to negative control (Figure 1a). However, this 
bacterial cell wall lysis increased with time. 

Inhibition of bacteria protein synthesis: The 0.5 MIC 
and 1 MIC of the ethyl acetate crude extract of Streptomyces 
sp. PERM2 did not signiϐicantly inhibit the E.coli proteins 
compared to the negative control (Figure 1b). 

Inhibition of ATPase/H+ proton pumps: The 0.5 MIC 
and 1 MIC of the ethyl acetate crude extract of PERM2 have 
signiϐicantly inhibited the ATPase pump compared to the 
negative control (Figure 1c).

Antioxidant properties

DPPH radical scavenging assay: Both PERM2 extract and 
ascorbic acid exhibited dose-dependent scavenging of DPPH 
radicals (Figure 2a). The maximum DPPH radical scavenging 
effect of the extract was 44.41 ± 2.63% at 1,600 μg/mL. 
Though the extract was able to scavenge DDPH* (free radical) 
and convert it into DPPHH, the scavenging effect of the extract 
was lesser than that of ascorbic acid. 

Ferric reducing power: The reducing power was 
determined by the reduction of Fe3+ to Fe2+ in the presence 
of different concentrations of ethyl acetate extract and 
ascorbic acid. As shown in Figure 2b, the absorbance of the 
reaction mixture at 700 nm increased with the increase in 
concentration of extract indicating the reducing potential of 
extract. The maximum reducing activity of the extract was 
observed at 1,000 μg/mL. However, the reducing potential of 
the extract was lesser than the reference standard.

GC-MS analysis of ethyl acetate extract of Streptomyces 
sp. PERM2

The GC-MS chromatogram of the ethyl acetate crude 
extract of Streptomyces sp. PERM2 is shown in Figure 3. A 
total of 112 volatile compounds are detected in the ethyl 
acetate crude extract. The three major compounds identiϐied 
in the ethyl acetate crude extract of Streptomyces sp. PERM2 
were 9, 12-octadecadienoic acid (Z, Z) (C18H32O2), with a 
concentration of 29.75% and a retention time of 18.003; 
tridecyl triϐluoroacetate (C15H27F3O2), with concentration 
24.82% and the retention time 18.034 and 1-(+)-ascorbic acid 
2,6-dihexadecanoate (C38H68O8), with concentration 22.34% 
and the retention time 16.849. The identiϐied compounds in 
the ethyl acetate crude extract of Streptomyces sp. PERM2 in 
GC-MS is represented in Table 4.

Table 2: Antibacterial and antifungal activities of ethyl acetate crude extract of 
Streptomyces sp. PERM2.

Test microorganisms Zone of inhibition (mm)
Bacteria Extract Streptomycin DMSO

Streptococcus pneumoniae ( ATCC 6465) 11.00 ± 0.4 23.66 ± 0.6 0.00
Haemophilus in luenza (ATCC 49247) 14.00 ± 0.3 23.66 ± 0.6 0.00
Staphylococcus aureus (ATCC 43300) 16.00 ± 0.5 24.66 ± 0.6 0.00

Bacillus cereus 17.00 ± 0.4 21.33 ± 0.5 0.00
Salmonella typhi 16.65 ± 0.5 18.33 ± 0.4 0.00

Escherichia coli (ATCC 25922) 15.66 ± 0.5 20.66 ± 0.6 0.00
Pseudomonas aeruginosa 26.00 ± 0.3 32.66 ± 0.5 0.00

Salmonella enteritidis 14.00 ±0.4 17.33 ± 0.5 0.00

Fungi
Percentage of inhibition (mm)

Extract Nystatin DMSO
Pythium myriotylum 30 56.67 0.00

Fusarium solani 36.11 52.78 0.00
Phytophthora megakarya 28.57 51.43 0.00

ATCC: American Type Culture Selection; DMSO: Dimethylsulfoxide.

Table 3: Minimum inhibitory concentration and Minimum bactericidal concentration of 
Streptomyces sp. PERM2 ethyl acetate crude extract.

Bacteria MIC (mg/mL) MBC (mg/mL)
Streptococcus pneumoniae (ATCC 6465) 2 2

Haemophilus in luenza (ATCC 49247) 0.5 2
Staphylococcus aureus (ATCC 43300) 2 4

Bacillus cereus 1 2
Salmonella typhi 2 2

Escherichia coli (ATCC 25922) 2 2
Pseudomonas aeruginosa  1 2
Salmonella enteritidis  1 4

Fungi MIC (mg/mL) MFC (mg/mL) 
Pythium myriotylum 2 0.05

 Fusarium solani 4 0.01
Phytophthora megakarya. 4 0.05

ATCC: American Type Culture Selection; MIC: Minimum Inhibition concentration; MBC: 
Minimum Bactericidal Concentration; MFC: Minimum Fungicidal Concentration.
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Figure 1: Different modes of action of ethyl acetate extract of Streptomyces sp. PERM2: (a) Inhibition of bacteria cell synthesis; (b) inhibition of bacteria 
protein synthesis; (c) inhibition of ATPase/H+ proton pumps.
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Figure 2: DPPH radical scavenging activity (a) and ferric reducing activity (b) of ethyl acetate extract of Streptomyces sp. PERM2 and ascorbic acid.

Figure 3: GC-MS chromatogram of ethyl acetate extract of Streptomyces sp. PERM2.

Table 4: Major compounds identiϐied in the ethyl acetate crude extract of Streptomyces sp. PERM2 in GC-MS.
Retention time 

(min) Area (%) Name of the 
compound

Molecular 
weight 

Molecular 
formula

Nature of 
compound Biological activity

18.003 29.75 9, 12-octadecadienoic 
acid (Z, Z) 280 C18H32O2

Polyunsaturated 
Fatty acid

Antioxidant, anti-inϐlammatory, hypocholesterolemic, cancer preventive, 
hepatoprotective, nematicide, antihistaminic antieczemic, antiacne, 

antiandrogenic, antiarthritic, anticoronary, insectifuge 

18.034 24.82 tridecyl 
triϐluoroacetate 296 C15H27F3O2  Ester compound Antibioϐilm

16.849 22.34 1-(+)-ascorbic acid 2, 
6-dihexadecanoate 652 C38H68O8

Ascorbic acid 
(Vitamin C)

Antioxidant, antiscorbutic, anti-inϐlammatory, antinociceptive, anti-mutagenic, 
wound healing property
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LC-MS/MS analysis of ethyl acetate extract of 
Streptomyces sp. PERM2

The results of LC-MS/MS analysis showed the presence 
of 25 different non-volatile compounds from ethyl acetate 
crude extract (Table 5). One of the compounds in the extract 
was identiϐied as 3, 30-di-methyl ellagic acid (C16H10O8), with 
a peak at retention time of 8.274 min and molecule weight 
429.2.

Discussion
Bioactive metabolites produced by microbes have 

gained attention recently, due to their sophisticated 
chemical structure and highly speciϐic biological activities. 
Actinobacteria are a potential candidate to ϐight against 
multidrug-resistant organisms, are well-known producers of 
antimicrobial compounds, and have been found in different 
habitats worldwide [29,37]. They are intensively used in 
pharmaceutical and agrochemical industries. These bacteria 
produce about 75% of commercially and medically useful 
antibiotics [38]. Actinomyces are useful biological tools in the 
production of antimicrobials against bacteria and fungi [39]. 
Streptomyces sp. PERM2 showed good antimicrobial activity 
in solid medium and fermented state. Our results indicated 
that the antimicrobial metabolites were extracellular. Most 
of the secondary metabolites and antibiotics are extracellular 
in nature and extracellular products of actinomycetes show 
potent antimicrobial activities [40]. From the results, it appears 

that the antimicrobial action of Streptomyces sp. PERM2 and 
the ethyl acetate crude extract were more pronounced on 
both Gram-positive and Gram-negative bacteria and fungi. 
These results are different from the reports of Rammali, et 
al. [41] and Anavadiya, et al. [42]. The ethyl acetate crude 
extract of Streptomyces sp. PERM2 was tested for its MIC level 
against pathogenic bacteria and fungi. The MIC value of the 
ethyl acetate crude extract of PERM2 ranges from 0.5 - 2 mg/
mL against pathogenic bacteria and from 2 - 4 mg/mL against 
pathogenic fungi. These values were higher than the values 
obtained from ethyl acetate crude extract of Streptomyces 
sp. Strain FR7 which ranged from 0.005 - 0.1 mg/mL against 
pathogenic bacteria and fungi [43].

The ethyl acetate crude extract of Streptomyces sp. PERM2 
was investigated for the scavenging abilities on DPPH and ion-
reducing power. DPPH is the most common and reasonably 
simple approach for measuring the radical scavenging activity 
of active biological particles [44]. The ethyl acetate crude 
extract of Streptomyces sp. PERM2 was able to reduce the stable 
radical DPPH to the yellow–colored diphenylpicrylhydrazine. 
Similar results have been found with the ethylacetate extract 
of Streptomyces sp. Strain FR7 [43]. On the other hand, the 
reducing power increased with increasing concentration of 
the ethyl acetate crude extract of Streptomyces sp. PERM2. The 
reducing capacity of a compound may serve as a signiϐicant 
indicator of its potential antioxidant activity [45]. 

Table 5: Bioactive metabolites obtained by LC-MS/MS from the ethyl acetate extract of Streptomyces sp. PERM2.
Peaks Retention time (min) Fragments Molecular weight Identi ication

1 7.168 97.029; 99.009; 110.038; 125.097; 163.111; 191.122; 199.133; 207.024; 225.113; 243.124 - unknown
2 7.696 79.959; 191.073; 263.095;399.199  unknown

3 8.274 127.114; 139.114; 171.105; 199.132; 201.116; 211. 134 ; 275.203; 293. 215 ; 311.225; 329.239 C16H10O8

3,30-di-O- methyl ellagic 
acid

4 9.171 58.008; 99.093; 127.076; 129.093; 171.102; 189.141; 195.139; 201.14 ; 279.119; 295.231; 
313.243 - unknown

5 9.648 59.017; 129.092; 171.102; 183.139; 195.139; 277.218; 295.231; 309.207; 313.240; 356.250 - unknown
6 9.913 171.103; 195.139; 211.170; 277.220; 295.232; 341.271 - unknown
7 10.072 123.118; 171.105; 195.140; 223.228; 259.207; 277.222; 295.232 - unknown
8 10.337 152.937; 171.007; 402.245; 476.297; 477.216  unknown
9 10.974 399.220; 413.233; 416.221; 431.247; 446.271; 461.296  unknown

10 11.821 130.89 ; 349.329;392.322 - unknown

11 12.509 171.101; 277.216; 279.232; 291.196; 293.212; 295.227; 309.207; 311.2323; 313.287, 327.217; 
589,453 - unknown

12 13.096 171.102; 279. 236 ; 293.214; 311.227; 313.239; 329.235; 591.473 - unknown
13 13.682 279.232; 281.250; 293.212; 311.225; 313.235; 329.233 ; 593.485 - unknown
14 14.319 211.134; 255.296; 296.213; 311.226; 329.234; 567,472 - unknown
15 14.425 277.219; 279.236; 295.231; 313.239; 575.467 - unknown
16 14.532 333.213; 574.434; 575.450; 575.484; 575.656; 576.014 - unknown
17 15.062 156.137; 256.237; 266.296; 278.220; 296.232; 313.299; 314.241;552.477 - unknown
18 15.275 361.349; 365.340; 403.363; 429.340; 447.354 - unknown

19 15.328 241.216; 275.200; 276.204, 277.216, 279.232; 296.230; 360.220; 404.361, 5543.444; 556.514, 
556.449, 584.444; 602.391; 602.477 - unknown

20 15.915 346.287; 581. 466 ; 607.513; 625.524 - unknown
21 17.194 374.321; 635.550; 563.565 - unknown
22 17.992 402.351, 663.579; 681.592 - unknown
23 19.002 663.579 ; 681.596 - unknown
24 20.007 635. 543 ; 708.606 ; 710.578 ; 754.510 ; 607 - unknown
25 20,915 562. 522; 580.533; 742. 592; 788.639 - unknown
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Modes of action of ethyl acetate crude extract of 
Streptomyces sp. PERM2 such as bacteria cell wall 
synthesis and inhibition of bacteria protein synthesis were 
evaluated against E. coli, one of the most sensitive bacteria 
pathogens. Bacteria cells are surrounded by a cell wall 
made of peptidoglycan, which is a particular biological 
structure, present predominantly in the Gram-positive 
bacteria wall, made from polysaccharide chains consisting 
of N-acetylglucosamine (NAG) and N-acetylmuramic acid 
(NAM), cross-linked together by short peptides containing 
modiϐied amino acids, such as aminopimelic acid (DAP) and 
native L-or D-amino acids. From a functional point of view, the 
bacterial cell wall is the most important structure that permits 
bacteria to maintain their shape and respond efϐiciently to 
environmental stresses, maintaining the osmotic balance 
[46]. ß-lactams and glycopeptides are molecules recognized 
to inhibit cell wall synthesis. In this study, the 0.5 MIC and 
1 MIC of the crude extract of Streptomyces sp. PERM2 has 
inhibited cell wall synthesis. This result showed that the ethyl 
acetate crude extract of Streptomyces sp. PERM2 could contain 
Beta-lactam and/or Glycopeptide molecules. Streptomyces sp. 
PERM2 could be a good candidate to be used in the formulation 
of ß-lactams antibiotics whose biological actions are 
correlated to the inhibition of cell wall biosynthesis. Protein 
biosynthesis is catalyzed by ribosomes and cytoplasmic 
factors. The bacterial 70S ribosome is composed of two 
ribonucleoprotein subunits, the 30S and 50S subunits [47]. 
Antimicrobials inhibit protein biosynthesis by targeting the 
30S or 50S subunit of the bacterial ribosome [48,49]. Among 
these antimicrobials, Aminoglycosides and Tetracyclines are 
recognized to respectively interact with the 16S r-RNA of 
the 30S subunit near the A site through hydrogen bonds or 
act upon the conserved sequences of the 16S r-RNA of 30S 
ribosomal subunit to prevent binding of t-RNA to the A site 
[47,48]. Antimicrobials belonging to the class of macrolides 
affect the early stage of protein synthesis (translocation), by 
targeting the conserved sequences of the peptidyl transferase 
center of the 23S rRNA of the 50S ribosomal subunit [47,50]. 
While oxazolidinones interfere with protein synthesis at 
several stages as follows: (i) inhibit protein synthesis by 
binding to 23Sr RNA of the 50S subunit and (ii) suppress 70S 
inhibition and interact with peptidyl-t-RNA [51,52]. In this 
study, 0.5 MIC and 1 MIC of the ethyl acetate crude extract of 
Streptomyces sp. PERM2 has not signiϐicantly inhibited the E. 
coli proteins compared to the negative control. The results 
reveal that the ethyl acetate crude extract of Streptomyces 
sp. PERM2 does not contain antimicrobials able to interact 
on the 30S and 50S subunits of the 70S ribosome of bacteria. 
Determination of bacterial resistance to antibiotics of all 
classes is helpful. A better understanding of the mechanisms 
of antibiotic resistance will help clinicians regarding the usage 
of antibiotics in different situations [53]. From the results, it 
appeared that 0.5 MIC and 1 MIC of the ethyl acetate crude 
extract of Streptomyces sp. PERM2 has signiϐicantly inhibited 
bacteria ATPase pumps. Thus, this extract could signiϐicantly 
contribute to overcoming multidrug-resistant organisms. 

Secondary metabolite proϐiling based on GC-MS is 
becoming a foundation in the ϐield of biological sciences 
and has been successfully employed to determine Volatile 
Organic Compounds (VOCs) from various samples [54,55]. 
The actinobacteria phylum has been reported as a proliϐic 
producer of thousands of bioactive secondary metabolites. The 
present investigation revealed the presence of 112 VOCs from 
the ethyl acetate crude extract of Streptomyces sp. PERM2 and 
the 3 major compounds were indicated by the highest peaks. 
The most notable compounds identiϐied with GC-MS were 9, 
12-octadecadienoic acid (Z, Z), a polyunsaturated fatty acid. 
Fats are known to be vital sources of energy however, fats, as 
dietary intakes have more roles in the physiological system. 
Earlier studies have shown that unsaturated fatty acids 
have more health beneϐits than saturated fatty acids [54,56]. 
Observations made on the intake of dietary fats have shown a 
steady relationship between polyunsaturated fatty acids and 
reduced risk of heart disease [57]. This fatty acid compound 
is recognized to possess bioactive properties which include: 
antioxidant, anti-inϐlammatory, hypocholesterolemic, cancer 
preventive, antifungal, antibacterial, anti-acne, anti-coronary, 
anti-eczemic, insecticidal properties [57,58]. Tridecyl 
triϐluoroacetate has the second-highest content from the ethyl 
acetate crude extract of Streptomyces sp. PERM2 belongs to the 
family of ester compounds. This compound was also identiϐied 
from the methanol extract of Halimeda sp., a macroalga 
isolated from the Red Sea, and had been demonstrated to 
possess antibioϐilm activities [59]. 

The compound 1-(+)-ascorbic acid 2, 6-dihexadecanoate, 
the third high content from the ethyl acetate crude extract of 
Streptomyces sp. PERM2 is a vitamin C compound. Ascorbic 
acid (Vitamin C) is required for the synthesis of collagen, a 
substance necessary for the healing of wounds. It is a highly 
effective antioxidant protecting cells from damage by free 
radicals. Natural antioxidants are potentially safe as they have 
limited side effects, efϐicient and inexpensive, and are obtained 
from renewable sources. Studies have shown that the vitamin 
can help speed up the healing process of wounds [60]. The 
compound l-(+)-ascorbic acid 2,6-dihexadecanoate is reported 
to possess antibacterial, antioxidant, antiscorbutic, anti-
inϐlammatory, anti-nociceptive, antimutagenic, antitumor, 
and wound healing properties [61-63].

Based on LC-MS/MS analysis, only one chemical compound, 
the 3, 30-dimethylellagic acid was identiϐied from ethyl 
acetate PERM2 crude extract. This identiϐied compound is an 
ellagic acid derivative. The compound 3, 30-dimethylellagic 
acid is recognized to possess antioxidant, antibacterial, 
antiviral, anti-inϐlammatory, antidiabetic, cytolytic, and 
neuroprotective properties [64,65].

In-vitro antimicrobial activity of the ethyl acetate extract 
of Streptomyces sp. PERM2 against the most critical group 
of multidrug-resistant bacteria (Staphylococcus aureus, 
Streptococcus pneumoniae, Escherichia coli, Pseudomonas 
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aeruginosa) Thus, the antimicrobial endophytic Streptomyces 
derivatives could be useful alternatives for the treatment of 
fungal and bacterial infections. The advantages of using these 
bioresources and their natural compounds may reduce the 
risk of side effects and lower the cost. Based o n antimicrobial 
activities, modes of action, antioxidant activities, and the 
proϐile of compounds present in the ethyl acetate crude 
extract of Streptomyces sp. PERM2, it will be necessary to 
complete the chemical identiϐication and puriϐication of 
unknown compounds present in this extract for recovery 
in pharmaceutical industries, then contribute to reducing 
antibiotic resistance. 

Conclusion
The ethyl acetate extract of Streptomyces sp. PERM2 

displayed signiϐicant antimicrobial activities against Gram-
negative and Gram-positive bacterial pathogens, and 
pathogenic fungi, and exhibited DPPH and ion-reducing power 
antioxidant activities in vitro. The ethyl acetate extract of 
PERM2 signiϐicantly showed a great effect on the inhibition of 
bacteria cell wall synthesis and ATPase pumps. GC-MS showed 
the presence of three major compounds 9, 12-octadecadienoic 
acid (Z, Z) (29.75%), triϐluoroacetic acid (24.82%), and 
1-(+)-ascorbic acid 2, 6-dihexadecanoate (22.34%) while the 
LC-MS/MS showed the presence of 3,30-di-methyl ellagic acid 
which are recognized to possess diverse biological activities 
which mostly are antibacterial, antifungal, antioxidant and 
anti-inϐlammatory properties. 
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